If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5-8x^2=0
a = -8; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-8)·5
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*-8}=\frac{0-4\sqrt{10}}{-16} =-\frac{4\sqrt{10}}{-16} =-\frac{\sqrt{10}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*-8}=\frac{0+4\sqrt{10}}{-16} =\frac{4\sqrt{10}}{-16} =\frac{\sqrt{10}}{-4} $
| ?052x−x2=40 | | 8(x+8)=10x+(-4) | | -7-4n-1=7+7n | | x=1428 | | x/4-6=26 | | (3/5)x-15=30 | | 2.4(2–x)–0.6(4x–3)=0 | | 3x-2x²+10=0 | | w/11=5 | | 3x^2+9x+8=2 | | 9=(x-4)²-9 | | 45x=360x= | | 3x^2+9x+8=20 | | 10x-4x+132=10+80 | | 12-x=96 | | 2(3x+6)=3(3x-2 | | 1=11-z | | 4(x+25)=40+2x–8x | | -7x+6+2x-4=3x-6+1+x | | 5(x+4)=7x+8 | | 246/x=-41 | | 5*2x=2x+6 | | (0.63)=(x/0.05) | | 5y2(5y3)=25y5 | | x/19.1=(30.28-x)/30.28 | | (x/19.1)=(30.28-x)/30.28 | | -3+1x=-2(x+1) | | (5y3)(5y2)=25y5 | | -3(2x-19)=-3x | | 4x+8=5x-(3x+18) | | 4x+(-2)=5x+1 | | -51=-u/5 |